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A Metahierarchical Rule Decision System to Design
Robust Fuzzy Classifiers Based on Data Complexity

Javier Cózar , Alberto Fernández , Francisco Herrera , and José A. Gámez

Abstract—There is a wide variety of studies that propose dif-
ferent classifiers to solve a large amount of problems in distinct
classification scenarios. The no free lunch theorem states that if we
use a big enough set of varied problems, all classifiers would be
equivalent in performance. From another point of view, the per-
formance of the classifiers is dependant of the scope and properties
of the datasets. In this sense, new proposals on the topic often focus
on a given context, aiming at improving the related state-of-the-
art approaches. Data complexity metrics have been traditionally
used to determine the inner characteristics of datasets. This way,
researchers are able to categorize the problems in different sce-
narios. Then, this taxonomy can be applied to determine inner
characteristics of the datasets in order to determine intervals of
good and bad behavior for a given classifier. In this paper, we will
take advantage of the data complexity metrics in order to design a
fuzzy metaclassifier. The final goal is to create decision rules based
on the inner characteristics of the data to apply a different ver-
sion of the fuzzy classifier for a given problem. To do so, we will
make use of the FARC-HD classifier, an evolutionary fuzzy system
that has led to different extensions in the specialized literature.
Experimental results show the goodness of this novel approach as
it is able to outperform all versions of FARC-HD on a wide set of
problems, and obtain competitive results (in terms of performance
and interpretability) versus two selected state-of-the-art rule-based
classification system, C4.5 and FURIA.

Index Terms—Data complexity metrics (DCM), evolutionary
fuzzy system, fuzzy rule based classification system, metaclassifier.
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I. INTRODUCTION

OVER the last decades, much effort has been invested into
designing new classifiers. However, their performance is

very dependent on the problem to solve. In fact, following the
no free lunch theorem [1], [2], if all classifiers are evaluated
using a big enough set of problems, all those classifiers would
be equivalent.

When a fuzzy classifier is designed, it is usually evaluated
using a set of problems with certain properties, i.e., imbalanced
[3], [4], high-dimensional problems [5], [6] among others. In this
way, we can guess a relation between the characteristics of the
problem and the performance of the classifier. Related to it, data
complexity metrics (DCMs) describe problem’s properties that
can be used to know in advance the behavior for each classifier
[6]–[9]. These properties may focus on different aspects, as the
class distribution, the level of overlapping between features, and
so on. For example, a given metric can provide us information
whether a problem can be solved by linear programming just
computing the minimum sum of error distance of each dataset’s
point to a hyperplane, which separates these points into two
groups or classes. If it equals 0 means that the problem can be
solved with no error by simple linear programming. Therefore,
this metric can be used as an indicator of the ease of a problem.

In [10] 12 of these metrics were used to discover intervals
of good and bad behavior for a set of three classifiers. In other
words, they discovered subspaces in the hyperspace of the 12
DCMs where a classifier performs good, bad, or unstable. These
intervals might be used to extract Domains of Competence
(DoC) for a classifier and derive usage rules which determine a
priori its performance for a problem with the interval character-
istics.

Our aim in this paper is to design a data complexity guided
classifier based on the previous ideas. This process is divided
into the following two steps.

1) First of all, we will start from a set of classifiers and we
will analyze their behavior on different type of problems,
where each type is described by DCMs.

2) With the former information, we will design a hierarchi-
cal rule decision system (HRDS) to decide which fuzzy
classifier would have the best performance on a certain
problem.

As a case study, we have selected the family of Fuzzy Asso-
ciation Rule-Based Classification model for high-dimensional
(FARC-HD) problems classifiers, i.e., the original approach [11]
and three extensions (IVTURS [12], IVTURS-Imb [13], and
FARC-FW [14]) designed to focus on problems with specific
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characteristics. As a consequence, it is interesting to analyze the
metaclassifier, called FAR metaclassifier (FAR-MC), to check
whether the specializations of the extensions are used for their
respective specific problems or not.

The rationale of the selection of fuzzy rule based classifica-
tion systems (FRBCS) as baseline algorithms is based on two
criteria: First, their good performance and interpretability in
different contexts of applications; and second, they are models
that can natively deal with the uncertainty of the data from real-
world problems, leading to very robust classification systems.
In addition, FARC-HD is a state-of-the-art algorithm which has
proved to be a robust classifier in different scenarios [15], [16]
as well as its variants [17], [18].

Our proposed metaclassifier approach can be embedded with
any family of classifiers. However, the benefits of using inter-
pretable models, such as fuzzy classifiers, add more advantages
to the output model. It provides a simple yet powerful set of lin-
guistic rules that provides a clearer description of the phenom-
ena and, therefore, allows users and experts to easily understand
the problem. We must point out that a metaclassifier is quite
different from an ensemble: while the first one combines the
individual outputs of multiple classifiers, the second just selects
one classifier to predict. Therefore, the use of an ensemble of
fuzzy classifiers affects drastically to the interpretability of the
output model, whereas our proposed metaclassifier maintains
the original one from the selected classifiers.

Finally, regarding the experimentation phase, we will use
a large set of binary class problems (up to 421) to train and
evaluate the performance of the proposed algorithm. We have
applied a novelty procedure to split the group of datasets, called
distribution-balanced DCM(DB), preserving the characteristic
distribution of the problems. We have left 251 datasets for train-
ing and 170 for test. In the evaluation process, we have carried
out a comparison between FAR-MC and its base classifiers. Also
to keep in mind the upper bound of the performance of FAR-MC,
we show the results of the perfect metaclassifier which always
selects the best base classifier for each problem, called Oracle.
To conclude, our experimental analysis is devoted to confirm the
necessity of using the intrinsic data characteristics of a problem
(complexity metrics) to determine the best suited single FRBCS
to be applied. In order to carry out a fair comparison, we will
contrast our FAR-MC proposal versus classifiers with similar
properties and capabilities, namely C4.5 [19] and FURIA [20].
Motivated by the problem of imbalanced classification [22] in
our experimental analysis we consider two different scenarios:
using or not SMOTE [21] as a previous preprocessing step.

To sum up, the main contributions of this research can be
enumerated as follows.

1) We make use of DCMs to generate intervals of behavior,
based on [7] and [10], to understand the inner character-
istics of the problems from which each classifier is better
suited.

2) We build a metaclassifier based on an HRDS from the
intervals of behavior. This current research supposes one
step forward to the findings extracted in [10]. Specifically,
apart from discovering the properties of the intervals of
behavior, we combine this information to automatically
compose an HRDS in order to generate a metaclassifier

which benefits from the best behaviors of the individual
classifiers. Therefore, it is able to automatically decide
which is the most suitable fuzzy classifier to be applied to
a given problem to achieve the highest performance.

3) We will use a family of fuzzy classifiers to build the meta-
classifier, called FAR-MC.

4) Our conclusions are supported by a thorough experimental
study using a large set of problems. For the validation, we
have splitted it into train and test set of problems using
DB-DCM, a procedure which preserves the characteristics
of the datasets in each group, leading to more robust and
reliable conclusions.

This paper is structured into five sections. In Section II, we
define DMCs and present how these metrics can be used to de-
fine the behavior of different classifiers depending on the dataset
characteristics. Afterward, we describe how we use these defi-
nitions to build FAR-MC. Then, in Sections III and IV, we de-
scribe the experimental framework and the study performed in
this paper, respectively. Finally, in Section V, we summarize the
conclusions and expose some future work on the topic. Further-
more, as complementary material,1 we provide additional infor-
mation about the used multiclass and derived binary datasets. It
also includes information about characteristics of the datasets,
which each base classifier process in the HRDS of FAR-MC, as
well as the percentage that they represent in relation with the
full set of train or test problems.

II. META-HRDSS TO DESIGN ROBUST FUZZY CLASSIFIERS

In this research, we propose using a family of fuzzy classifiers
in order to generate a metaclassifier that is able to outperform
the single algorithms it is composed of. To do so, we describe
the algorithms’ behavior by means of DCMs, and then, we use
this information to generate a meta-HRD.

This section is divided as follows. First, in Section II-A, we
describe DCMs and how these metrics can be used to categorize
problems based on their inner characteristics. Then, we explain
how these characteristics are used to generate the DoC (good,
bad, and unstable behavior) for a set of classifiers. Afterward,
in Section II-B, we adapt the usage of an automatic software to
generate the aforementioned DoC to our requirements. Finally,
in Section II-C, we detail the procedure to generate the meta-
HRDS used by FAR-MC based on the DoC.

A. Describing Algorithms’ Behavior by Means of DCMs

DCMs are measures that characterize datasets, i.e., the dif-
ficulty of a classification problem [23]. The nature of dataset
properties can vary, so it does the definition of DCMs. For ex-
ample, some problems have nonzero Bayes error [7]. Others
have a complex decision boundary and/or subclass structures.
Certain problems have a high-dimensional feature space and
sparseness of available samples which lead to estimation diffi-
culties, etc.

Ho and Basu [7] focused on a set of 12 geometrical charac-
teristics of the class distributions, as they support that these are
more discriminant than other metrics for classification problems.

1http://simd.albacete.org/supplements/FARMC.htm
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TABLE I
DATA COMPLEXITY MEASURES

This set of DCMs was divided into three blocks (see Table I).
The first one contains DCMs which measures the overlaps in
feature values from different classes. The second measures the
separability of classes. Finally, the last block is formed by mea-
sures of geometry, topology, and density of manifolds.

To test if these metrics describe well or not the difficulty of a
classification problem, in [7] they treat each dataset as a point in
a twelve-dimensional hyperspace, and examined the distribution
of these points in this space by the density plots and pairwise
scatter plots for interesting structures. They employ a set of
944 binary class (real and synthetic) problems, where some of
the synthetic are random noise (they assign a random class to
each instance). First, they conclude that the distribution of real-
world problems is significantly different from that of random
noise. Therefore, real-world problems have learnable structures
that can be used to describe them. Regarding the difficulty of
a classification problem, they found that there exist structures
in the twelve-dimensional hyperspace that reveal the intricate
relationships among the factors, which affects the difficulty of
a problem.

However, the performance achieved by a classifier is depen-
dant on both the difficulty of a problem and the classifier. In [10]
the authors use this set of DCMs to describe the characteristics
of the datasets in order to identify regions of good, bad, and not
characterized behavior for different classifiers. The objective is
to know a priori if a certain classifier would perform well or
poorly for a specific problem.

The main idea behind the performance prediction is based on
the relation between the DCMs of a problem and the accuracy
obtained with the classifier. To better understand this concept,
they show plots where problems (in x-axis) are sorted by a spe-
cific DCM and the accuracy is in the y-axis. One of these plots
is shown in Fig. 1, which depicts an example of the former be-
havior for the DCM F3, in which there is a region defined by

Fig. 1. Accuracy of SVM for problems sorted by F3 DCM.

Fig. 2. Form of the rules to characterize the behavior of a classifier.

values of this metric between 0.01 and 0.75 where the accuracy
obtained by the support vector machine (SVM) classifier is un-
stable and in most cases below 90%. On the contrary, for F3
values upon 0.75 the accuracy is more stable and generally over
95%.

For each classifier, there can be more than one region of
good/bad/not characterized behavior, as they are using several
DCMs. In order to guess the performance of a classifier for a
certain problem, it is necessary to combine all this information.
For example, a problem may have a low value of L1, where the
classifier SVM behaves good, and a low value of F1, where its
behavior is bad. Ho and Basu [7] performs deriving one rule
per good, bad behavior, and not characterized regions with the
form depicted in Fig. 2, where DCMi refers to one of the used
DCMs.

Then, all the good behavior rules are combined into a sin-
gle one using the or operator. They call this rule positive rule
disjunction (PRD). Similary, they do the same with the bad be-
havior rules, calling this rule negative rule disjunction (NRD).
The PRD and NRD rules may present overlapping in their sup-
port (the problems that they cover). However, mutually exclusive
description of the good and bad regions is desirable in order to
estimate the behavior of the classifier. In order to tackle this
issue, they consider the conjunctive operator and (∧) and the
difference operator and not (∧¬) between the PRD and NRD
rules. After analyzing different combinations of PRD and NRD
rules using these two operators, they conclude that good be-
havior regions are described directly by the rule “PRD,” bad
regions are described by the rule “NRD ∧¬ PRD,” and not char-
acterized regions are described by the rule “not PRD and not
(NRD ∧¬ PRD)”. To check the behavior of these rules, they
show some pictures that show the accuracy for a classifier for
each group of datasets described by the good and bad behavior
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Fig. 3. Accuracy of SVM for problems grouped by PRD and NDR ∧¬ PRD.

and the noncharacterized region. One of these figures, for the
SVM classifier and the set of 340 training problems, is shown
in Fig. 3.

In [10], a software tool was also developed for the automatic
extraction method of the DoC,2 called ComplexityRuleExtrac-
tion. This software generates the intervals for good, bad behav-
iors, and not characterized regions for each DCM. At the same
time, it describes which datasets match with each rule. The main
outline of the automatic extraction method is described in Fig. 4.
It manages four definitions, two for good and bad behavior ele-
ments (Definitions 1 and 2), and other two for intervals of good

and bad behavior (Definitions 3 and 4), where U
tra

, U
tst

and U
diff

refers to the mean training, test and training minus test accuracy
for the whole set of problems (ui ∈ U ), and V

tra
, V

tst
and simi-

lary V
diff

refers to the mean training, test and training minus test
accuracy for the datasets in the interval V (ui ∈ V ). Also, this
software requires two input parameters, minGoodElementTest
and threshold, which refers to the minimum accuracy level for a
good behavior element and the improvement required in terms
of the mean test accuracy for an interval of datasets against the
mean test accuracy for the whole set of problems.

Definition 1: A good behavior element ui is such that
1) utest

i ≥ minGoodElementTest; and

2) utra
i − utst

i ≤ U
diff

Definition 2: A bad behavior element ui is such that
1) utest

i < minGoodElementTest; and

2) utra
i − utst

i > U
diff

Definition 3: An interval of good behavior V =
{ui, . . . , uj} is such that

1) V
diff ≤ U

diff
; and

2) V
tst ≥ U

tst
+ threshold; and

3) ∀uj ∈ V ;utst
j ≥ minGoodElementTest

Definition 4: An interval of bad behavior V =
{ui, . . . , uj} is such that

1) V
diff

> U
diff

; and
2) V

tst
< U

tst− threshold
In order to extract the good, bad behavior, and not char-

acterized intervals a bottom-up process is followed. First, the
algorithm arranges the datasets in U based on the values of one
of the twelve DCMs (CMj ), generating a sorted list UC Mj

. Af-
terward, this list is explored from the lowest to the highest value

2http://sci2s.ugr.es/DC-automatic-method

Fig. 4. Automatic Extraction Method.

of CMj : when a good or bad behavior element ui ∈ UC Mj
is

found (Definitions 1 and 2), the exploration stops and consid-
ers such element as an initial interval V = ui . This interval is
extended by adding adjacent elements to ui while such interval
verifies the Definitions 3 or 4 accordingly.

Once all the possible intervals have been extracted, a gener-
alization process is applied in order to merge intervals of the
same type which are overlapped or slightly separated. Finally,
the algorithm runs a filtering process to remove nonsignificant
intervals (which contain a low number of elements). The re-
gions that have not been labeled as good or bad behavior are the
noncharacterized intervals.

B. Automatic Method to Obtain the DoC

To extract the DoC for each classifier we will adopt
the methodology proposed in [10], which was described in
Section II-A.
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The concept of DoC for a certain classifier is different in
this paper, due to our aim is to design an HRDS which is able
to determine which classifier performs better than the others.
That means the performance of a classifier can be poor but the
best among the rest. Therefore, we define a score value which
contrasts the quality of the classifiers among themselves and we
use it to define the DoC. This matter implies the following two
changes.

1) Score instead of accuracy as input performance metric.
2) Parameters needs to be adapted to the score.
Regarding the first point, one option could be to use the rank-

ing (using the accuracy, area under the ROC curve, or other
performance metric), as it gives us information about their rela-
tive performance, being 1 the best measurement and n the worst,
being n the number of classifiers. However, this approach per-
forms poorly because it loses information about the relative
difference in terms of performance. The strategy adopted in
this paper consists on using the difference of the performance
between a classifier and other labeled as the default classifier.
For instance, let Cb be the default classifier and the individ-
ual performance of each classifier for a problem p be mC1

p ,
mC2

p , . . ., mCn
p . Then, the score is the difference mCi

p − mCb
p

for i = 1, . . . , n. In Section II-C, we will detail how we select
the default classifier.

The ComplexityRuleExtraction software uses two parameters
as inputs: minGoodElementTest and threshold. Their interpreta-
tion are, respectively, the minimum performance of an element
to be considered good and the mean improvement for a set of
problems compared to the mean performance for all the datasets
to be considered as a domain of competence (interval of good
behavior). Because the score has a different domain, we cannot
use the parameterization recommended by the authors. Instead,
we will explore different configurations for both parameters.

C. Metaclassifier Hierarchical Rule Extraction Method

Once the DoC have been obtained for all the selected classi-
fiers, we design an HRDS to decide a priori which classifier is
the best suited one given the characteristics of a certain problem.

As the DoC might overlap between classifiers, the priority
order is crucial. In order to determine the classifier’s priority
order, we will evaluate all the possible combinations and we
will choose the best. The number of possible combinations is
(n − 1)!, as the base classifier is not taken into account because
it is always the last classifier in the hierarchical rule system (it
is the default classifier). However, n should be a small number
(four in our case) so the number of combinations should be
small and easily tackled by any conventional computer.

In addition, the impact of the base classifier on the mean
performance is a constant, as it will be used for the datasets out
of the DoC of the other classifiers independently of the order.
Therefore, it is not necessary to evaluate its performance on
these remaining datasets while searching for the best classifier’s
priority order, which supposes a lower computational effort.

For the selection of the default classifier, we have designed a
wrapper algorithm that evaluate the HRDS obtained with each
classifier as the base one, and selects the best one according

Fig. 5. Algorithm to generate the best HRDS.

to the mean performance metric. The pseudocode is shown in
Fig. 5.

The inputs are a set of datasets, the classifiers, and the two
parameters for the ComplexityRuleExtraction software, min-
GoodElementTest, and threshold. In the following and for read-
ability reasons, these two parameters are renamed as mget and
th, respectively. The output is the HRDS.

First, all the classifiers are tested as the base one. Then, it
evaluates the DoC using the ComplexityRuleExtraction soft-
ware testing all the orderings for the remaining classifiers. From
the best configuration of DoC and base classifier (among all the
evaluated configurations) it builds the HRDS appending the base
classifier to the end of the system.

III. CASE STUDY BASED ON THE FARC-HD FAMILY:
EXPERIMENTAL FRAMEWORK

In this section, we design FAR-MC, a case study for the meta-
HRDS based on the FARC-HD family. First, in Section III-A,
we describe the evolutionary fuzzy systems (EFS) [18] used to
learn the decision system. Then, in Section III-B, we describe the
datasets used to generate and validate FAR-MC. Furthermore,
we describe DB-DCM, the strategy used to perform the split the
datasets into the train and test sets of problems. Afterward, in
Section III-C, we justify the selection of the performance metric
and we describe the statistical tests used for the evaluation.
Finally, in Section III-D, we detail the parameterization used
for the different methods.

A. Family of FARC-HD Algorithms: Standard Approach and
Current Extensions

FRBCS are highly interpretable models that can also deal
with the imprecision associated with real-world data acquisi-
tion. When the data used to build these models consist of a
high number of variables and/or instances, the learning pro-
cess suffers from exponential growth of the fuzzy rule search
space. Also to generate the database definition (which contains



706 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 27, NO. 4, APRIL 2019

the fuzzy partition for the variables of the problem) becomes a
complex task which have a huge impact in the performance of
the classifier.

In such complex scenarios evolutionary algorithms are very
suitable and usually lead to robust solutions. EFS carries out
a global search, evolving simultaneously the rulebase and
the database definition. A well-known state-of-the-art EFS is
FARC-HD (from FARC for high-dimensional problems) [11].
In addition to its scalability and robustness, we have selected it
because there exist a family of classifiers, variants of FARC-HD,
focused on solving different classification contexts.

In the following Sections, we will describe the basics of
FARC-HD and its variations.

1) Baseline FARC-HD: FARC-HD is a fuzzy association
rule-based classification algorithm for high-dimensional prob-
lems [11]. It starts from a predefined fuzzy partition, and builds
a set of candidate rules. This process is done building a search
tree to list all the possible frequent fuzzy item sets, which cor-
responds directly to the antecedent of a candidate rule.

However, dealing with the whole set of candidate rules is
impracticable even for small problems. In order to reduce the
number of candidate rules, it selects the most important based
on their support, which measures their coverage with respect to
the data. To carry out this process efficiently, the search tree is
pruned based on the a priori principle [24]. If a fuzzy item set
is not frequent (its support does not reach a minimum support
threshold), all the item sets derived from it by adding a fuzzy
predicate are not frequent either, so there is no need to calculate
their support and this branch of the search tree can be pruned.

Moreover, one of the main characteristics of FRBCSs is the
interpretability, which is dramatically reduced when using rules
with a high number of terms in the antecedent. In order to
generate a tractable and interpretable set of candidate rules, the
number of antecedents can be also limited to a maximum (by
limiting the maximum depth of the tree).

In a second phase, it reduces even more the number of can-
didate rules though a process called prescreening. This is done
because the number of candidate rules might sill be huge for
the subsequent search algorithm. In order to retain only the best
candidate rules, it follows a weighted instance scheme where
iteratively the best candidate rule is selected, and weights asso-
ciated with patterns are updated for the next iteration. It stops
when all the patterns are covered by more than kt rules.

Finally, in the third phase, it applies an evolutionary algorithm
to select a subset of the candidate rules to be present in the rule
base, and to tune the membership functions in the data base.

2) Interval Valued Fuzzy Reasoning Method with Tuning and
Rule Selection (IVTURS): One of the most important points in
the definition of FRBCSs is the membership functions of the
fuzzy variables. This is a difficult task due to the uncertainty
related to their definition. Interval-valued fuzzy sets [25] allows
to model the ignorance definition of the fuzzy terms [26], as it
provides an interval (instead of a single number) as the member-
ship degree of each element to this set. In [12] interval-valued
fuzzy sets are used to define the membership functions.

IVTURS starts from an initial FRBCS generated by means
of the base classifier FARC-HD, and then adapts the definition

of the membership functions to use the interval-valued fuzzy
sets. Finally, it uses a genetic algorithm to tune the definition
of the interval-valued fuzzy sets and to perform a rule selection
process. As the partition of the variables does not use classical
fuzzy sets, the reasoning method has been extended to deal with
this type of fuzzy sets.

Apart of the improvement in the design of the FRBCSs, it
uses more information in the membership function definitions.
Therefore, it is expected to deal better with problems where the
density of manifolds is high, but the output of that instances are
slightly different (as it considers the uncertainty of the member-
ship degrees for that instances).

3) IVTURS-Imbalanced: Imbalanced problems have re-
ceived a special interest in the last decades as a large num-
ber of real-world datasets suffer from this problem. Imbalanced
datasets refer to problems where one or more classes are rep-
resented by a large number of examples [known as majority
class(es)] while the other class(es) are represented by only a
few examples [known as minority class(es)] [22]. This unbal-
anced distribution leads the classifier to predict the examples as
one of the majority classes, completely ignoring the minority
ones.

IVTURS-Imbalanced [13] is designed to cope with imbal-
anced problems. It is a modification of the previous IVTURS
algorithm. The learning process is similar to the one described
in [12], but adding a new method just before applying the evo-
lutionary algorithm to select a subset of the candidate rules and
tune the membership functions. This method rescales the rule
weights of the generated rule base in order to avoid low confi-
dence levels of rules for the minority class. Also, the inference
process has been modified to predict instances which do not fire
any rule. In this case, instead of using a default prediction rule
(as in [11]), it uses a weighted combination of the most suitable
rules in the rule base to classify the uncovered instances.

4) Overlapping Classes: FARC-FW: The problem of over-
lapping or class separability refers to regions where similar
number of instances of both classes (in binary classification
problems) are present. This issue is directly proportional to the
hardness of classifying a problem, i.e., any linearly separable
dataset (absence of the overlapping problem) can be addressed
by a naive classifier, regardless the class distribution [27].

In [14], the FARC-HD algorithm is adapted to deal with class
separability problems. In order to do that, it assigns weights to
input variables to allow giving more importance to some vari-
ables, which suffers to a lesser extent the problem of overlap-
ping. In order to learn the best combination of weights, they use
a wrapper approach, in which for each combination of weights
they apply the evolutionary algorithm used in FARC-HD.

B. Datasets: Characteristics and Validation Procedure

The existing metrics to characterize the domain of compe-
tence are designed only for binary class datasets. Also, and in
order to obtain good DoC, we need as many datasets as possible
and with different characteristics. In order to do that, we have
followed the same strategy used in [10], taking a large number
of multiclass datasets and deriving a set of binary datasets from
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TABLE II
STATISTICAL INFORMATION FOR THE DCMS FOR ALL THE USED BINARY

DATASETS

them avoiding those which are linearly separable. These binary
problems have been generated from pairwise combinations of
the classes. In order to obtain additional datasets, this method-
ology has been also applied grouping the classes by pairs.

Moreover, we have made a selection of the problems used in
[10] limiting the number of predictive variables to a maximum of
15. This decision was taken since the classifier FARC-FW is very
time-consuming in terms of dimensionality. In addition to these
datasets, we have considered four new problems: haberman,
optdigits, pima, and shuttle.

The number of attributes of the multiclass problems ranges
from 3 to 53, and the number of classes from 2 to 28. From the
derived 74994 binary datasets, only 481 are used after the filter-
ing process. For more information, Table I in the complementary
website shows the number of attributes and classes for the mul-
ticlass problems, as well as the derived and used binary class
datasets (Derived b.ds. and Used b.ds., respectively). Regarding
the used binary problems, we also noted their characteristics in
terms of DCMs in Table II.

The validation process is used to measure how well a method
generalise when new input data is received. In data mining, the
validation process usually consists on dividing the dataset into
the training and test datasets. Then, the method is build using
the training dataset, and its performance is assessed over the test
dataset. In this paper, we have two levels of validations.

1) Performance of a single classifier on a single dataset. Fo-
cused on validating the performance of the base classifiers
during the FAR-MC construction process.

2) Performance of a single classifier on a set of datasets.
Focused on validating the performance of FAR-MC on a
set of “unseen” problems.

To evaluate the performance of a classifier on a dataset we
have used a tenfold cross validation. It is a commonly used
strategy that divides the dataset in k folds (10 in this case) and
performs k evaluation processes, training with k − 1 folds and
testing with the remaining (each time, the test fold is different).
We have ran three times (using the number of execution as seed)
the tenfold cross validation, and the average of the 30 executions
is reported.

In the second level, to evaluate the performance of the meta-
classifier FAR-MC, we split the datasets into training (Dtrain)
and test (Dtest) sets. The way we make this partition is a key

Fig. 6. Algorithm to split the datasets into training and test sets.

factor in both modeling the classifier and testing its performance.
We propose to use a similar set of training and test datasets in
terms of DCM distributions. In this way, we avoid a different
data complexity metric distribution between the training and test
datasets that could lead to erroneous conclusions.

Our strategy, called DB-DCM, splits datasets into k folds for
classification problems. The main idea is to stratify the datasets
in k folds. The pseudocode is depicted in Fig. 6.

First of all, we normalize the domain of the variables in the
range [0, 1]. Afterward, we select an initial point and iteratively
the nearest unassigned neighbour is assigned to the next fold
until all the points are assigned. At the end of this process, we
have a number of folds which contains a similar distribution of
points. We have chosen a number of folds of ten, six for training,
and four for test.

Respect to the initial point, instead of choosing it randomly,
we select the point whose distance to the mean point of the point
cloud is maximum [see Fig. 7(a)]. That way, we ensure it is a
point in the cortex of the point cloud. This is better than to be
in the center because the latest points will be very different as
the distances between them would be greater, i.e., in Fig. 7(b)
and (c) we show the paths using the farthest and mean point,
respectively.

Next, we show in the Table III the statistics of each DCM in
the training and test set using the previous algorithm (Table III).
As we can see, the values are quite similar to those in Table II,
which indicates a good stratification (only for the metric F1 we
can observe some differences).

C. Selection of a Performance Metric and Statistical Tests for
Experiment Validation

The evaluation criterion has a direct impact on the study, as
it is used to evaluate the classification performance and also to
guide the classifier modeling. The accuracy metric is a combina-
tion of the values of the confusion matrix, as shown in Table IV,
and is one of the most used in classification [see (1)]. However,
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Fig. 7. Example of different initial points for the DCMs stratiffication process. (a) Example of point cloud, mean and starting point (red triangle and cross) for
the algorithm. (b) Point selection order using the farthest point from the mean point as starting (red cross). (c) Point selection order using the closest point from
the mean point as starting (red cross).

TABLE III
STATISTICAL INFORMATION FOR THE DCMS FOR SPLITTED SETS OF THE

BINARY PROBLEMS

TABLE IV
CONFUSION MATRIX FOR A BINARY CLASS PROBLEM

this metric does not take into account the class distribution. In
this paper, we deal with problems with different ratios between
the majority and minority class (from 1 to more than 23). In
this framework accuracy might lead to erroneous conclusions
since the minority/negative class has little impact on accuracy

compared to the majority/positive class [13]. As an example,
for a dataset whose imbalanced ratio (IR, which is the ratio
between the majority and minority class) is equal 9, a naive
classifier which classifies all the examples as negative would
achieve an accuracy of 0.9

accuracy =
TP + TN

TP + FN + FP + TN
. (1)

For imbalanced datasets, which are problems with an unbal-
anced distribution between the majority and minority class, it
is more appropriate to use metrics which take into account the
class distribution [13], [28].

In this paper, we will use the area under the ROC curve
(AUC) as the performance metric, which is commonly used in
imbalanced problems. AUC combines the true positive and false
positive rates [28] [see (2)], where the TPrate is the percentage
of positive instances correctly classified ( TP

TP+FN ) and the FPrate

is the percentage of negative instances misclassified ( FP
FP+TN )

AUC =
1 + TPrate − FPrate

2
. (2)

For the sake of complementing the analysis of FAR-MC ver-
sus the state-of-the-art classifiers, we will take into account the
values of the precision and the recall [29], which are also widely
used in imbalanced domains. Specifically, we will combine both
values into the well-known F1-score [see (3)] as a single mea-
sure that balances both precision and recall, thus, allowing us to
assess the quality of our proposed methodology from an addi-
tional point of view

F1-score = 2 · precision · recall
precision + recall

(3)

For the sake of clarity, in the following we will use Dtrain and
Dtest for the sets of train and test datasets, AUCtrain

train and AUCtrain
test

for the train and test AUC metric for the datasets of the training
set of problems, and similary, AUCtest

train and AUCtest
test for the train

and test AUC metric for the datasets of the test set of problems.
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To evaluate the performance of FAR-MC we have divided
the validation process in two comparisons. First of all, we will
compare the metaclassifier FAR-MC versus the FARC-HD and
variants. Afterward, we will compare the performance of FAR-
MC and the state-of-the-art classifiers C4.5 [19] and FURIA [20]
in two variants: by using and not the preprocessing technique
SMOTE [21], which is an oversampling technique commonly
used to deal with imbalanced problems [22], [30].

For each comparison, we carry out a standardized methodol-
ogy composed of a sequence of statistical tests described in [31],
and then extended in [32]. The statistical study pipeline consists
on the following steps. First of all, we will apply a Friedman test
[33] to check the differences between the evaluated classifiers.
Afterward, we apply a set of paired Wilcoxon signed rank tests
[34] between the best classifier (in terms of best mean ranking)
and the rest. In order to reduce the familywise or type 1 error,
we apply a p-value correction using the Holm’s procedure [35].

It is worth pointing that FAR-MC can never outperforms
all other FARC-HD familywise classifiers, as at least it will
draw with another. As a consequence, we have used the version
of the Wilcoxon signed rank test described in [36] and also
recommended in [31] which is able to deal with draws, splitting
the ranks for ties evenly among the statistics R+ and R−.

D. Parameterization Setup

Each base classifier is already implemented in the soft-
ware KEEL [37]. It is a tool which provides a way to design
experiments with different datasets and computational intel-
ligence algorithms. For each classifier, we will use the de-
fault configuration for the parameters in such software tool.
The parameters configuration shared for all the classifiers
are nLabels=5, minSup=0.05, minSup=0.8, depth=3, k=2,
popSize=50, bitsgen=30, and FRM=Additive. The rest of the
parameters are, respectively for FARC-HD, IVTURS, IVTURS-
Imb and FARC-FW, maxTrials={15000, 15000, 20000, 1000 +
15000}, and alpha={0.15, 0.15, 0.2, 0.15}.

In the case of the state-of-the-art algorithms, C4.5, FURIA
and the preprocessing technique SMOTE, also use the default
parameterization. In the case of FURIA, the number of optimiza-
tions is 2 and the number of folds is 3. For C4.5, the confidence
level will be set at 0.25, with 2 being the minimum number of
item sets per leaf, and the application of pruning will be used
to obtain the final tree. SMOTE configuration will also be the
standard with a 50% class distribution, 5 neighbors for generat-
ing the synthetic samples, and heterogeneous value difference
metric for computing the distance among the examples.

In the case of the parameters for the automatic domain of
competence extraction, we have used seven possible values for
the minimum performance parameter mget and two possible
values for th per each mget: the same value as mget and this
value divided by 10. Hence, we have used fourteen pair of values
for mget and th which are shown in Table V.

IV. BUILDING A METACLASSIFIER: EXPERIMENTAL ANALYSIS

WITH FAR-MC

This section is divided in three blocks. In Section IV-A, we
build the metaclassifier FAR-MC using Dtrain and analyze its

TABLE V
PARAMETERIZATION FOR THE AUTOMATIC DOMAIN OF COMPETENCE

EXTRACTION SOFTWARE

Fig. 8. Difference between the best and worst classifier in terms of test AUC
and the cut level for discarded datasets.

behavior using the same set of problems. Afterward, we eval-
uate the performance of FAR-MC using the set of test datasets
Dtest. In Section IV-B, we analyze the performance of FAR-
MC comparing it against FARC-HD and its variants. Finally,
in Section IV-C we compare FAR-MC versus the state-of-the-
art FURIA and C4.5 classifiers, the last one with and without
applying the preprocessing technique SMOTE.

In addition, experiments will include the results of an ideal
metaclassifier called Oracle, which always select the best base
classifier for each problem. It is useful to keep in mind the best
reachable results of FAR-MC, so we can check its performance
knowing its upper bound.

A. Building the Metaclassifier (Using Dtrain)

Here, we use the training datasets Dtrain to build the HRDS of
the metaclassifier FAR-MC. In Section IV-A1, we will present
a problem related with datasets whose performance is similar
for all the base classifiers. In order to avoid such problem, we
will first apply a preprocessing technique to filter out those
problematic datasets. After that, in Section IV-A2, we perform
the construction of the HRDS following the algorithm described
in Fig. 5. Then, in Section IV-A3, we make an overview of the
performance of FAR-MC using the same set of problems Dtrain

used to build the metaclassifier.
1) Dtrain filtering: The DoC represent the relative good be-

havior, which refers to the performance compared to a fixed
default classifier. If we analyze the performance differences, we
may observe that for some problems the differences between the
best and worst AUC are quite small (see Fig. 8). In other words,
the performance of all the FARC-HD familywise classifiers are
very similar. These datasets do not provide us useful knowledge
about which classifier is the best, so a percentage of them (whose
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TABLE VI
SUMMARY RESULTS FOR ALL THE TRAINING DATASETS

differences are the lowest) will be removed. Analyzing Fig. 8,
we can see that there are some datasets whose differences are
very low, and then, these differences starts to increase very fast.
In this paper, we have filtered out the 20% of the datasets (which
are below the red line), allowing to still have a reasonable high
number of datasets.

2) Generating the HRDS: We have analyzed the distribution
of the dataset characteristics in Dtrain and we have found that
balanced and imbalanced datasets are equally distributed (as
well as in [10], we have considered IR ≤ 1.5 for balanced and
IR > 1.5 for imbalanced problems). As one of the base clas-
sifiers is focused on imbalanced problems, the results might be
skewed in benefit of IVTURS-Imb, with a clear bias to select it
as the best classifier in a higher proportion than the rest of clas-
sifiers. Therefore, we have divided the training datasets Dtraining

into balanced Dtraining
bal and imbalanced Dtraining

imbal in order to an-
alyze them separately and build independent hierarchical rule
systems, that will be combined later. In fact, if we compare the
results for the training datasets Dtrain (see Table VI), we can see
that the performance of IVTURS-Imb is noticeable better than
the other base classifiers. However, if we observe the results for
the balanced and imbalanced training datasets (Tables VII and
VIII, respectively) the results are quite different. In the case of
balanced datasets, paying attention to the AUC, FARC-FW, and
FARC-HD would be the best, but if we focus on the percentage
of perfect hits (same results than the Oracle) IVTURS seems to
be the best. On the contrary, in the case of imbalanced problems,
IVTURS-Imb is clearly the outstanding classifier both in terms
of AUC and Hits. Attending the win/tie/loss metric, no other
classifier seems to behave similar IVTURS-Imb. Also, if we
see the Hits it reaches the 45%, while the second best classifier
reaches only the 21%.

As a consequence, we have determined to use always
IVTURS-Imb in the case of imbalanced problems (rule “If
IR > 1.5 then IVTURS-Imb”). In contrast, in the case of bal-
anced datasets there is not an outstanding classifier, implying
the necessity of applying our methodology to discover a hierar-
chical rule system to select the best model for different contexts.

TABLE VII
SUMMARY RESULTS FOR BALANCED TRAINING DATASETS

TABLE VIII
SUMMARY RESULTS FOR IMBALANCED TRAINING DATASETS

3) Evaluation of FAR-MC: After running the algorithm de-
scribed in Fig. 5 using the 14 combinations of parameters for
mget and th, the best results were obtained using mget = 0.01
and th = 0.001, and the best default classifier was FARC-FW.
The rule system, combined with the ad hoc designed rule for the
imbalanced datasets, is shown in Fig. 9.

In the case of the rule for IVTURS-Imb it uses three DCMs
based on the class separability: middle values for N2, small for
N3 and high values for N4. Respect to the rule for IVTURS
it uses two measures of class overlapping (highest value for F2
and smallest for F3), and two of geometry, topology, and density
of manifolds (small values for N4 and the highest value for T1).

This HRDS suggests that the scope of the base classifiers
and the DCMs used in the decision rules differ. However, we
have analyzed the DCM characteristics of the datasets that fires
each rule, and from this point of view results agree with what
we expected. We think it is related to the generation process:
the DoC used for each decision rule are selected from the best
combination of mget, th and rule orders in terms of AUC, so the
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Fig. 9. Hierarchical Rule System generated from D train.

best dataset split for each classifier is achieved with this system.
However, also the dataset properties for each rule agree with the
scope of its classifier.

The information related with the DCM characteristics for the
set of problems that fire each decision rule can be consulted
in the Appendix, which can be downloaded in the complemen-
tary website. In the table related to the training datasets, we
may observe from these results that in the case of IVTURS-Imb
for balanced datasets, the IR is greater than in the other two
cases. This makes sense as IVTURS-Imb was designed for im-
balanced problems. Analyzing the DCM for the datasets fired
by IVTURS, the most remarkable statistics are high T2 val-
ues, which refers to the density of manifolds (ratio between the
number of instances and the number of input variables), and
low values for F1 which implies high overlapped data. Then,
the datasets which fires the FARC-FW classifier have very high
values for F1 (which refers to low overlaping between features)
and low values for T2 that means a low ratio between the num-
ber of instances and the number of features. These results are
reasonable from the point of view of the scope of each classifier.
Only for the case of FARC-FW we expected a set of problems
with high overlaping between features, but we found the oppo-
site. This might be because IVTURS-Imb also deals well with
this type of datasets and FARC-FW is in a lower level of priority
inside the hierarchical rule system.

The results for the proposed metaclassifier FAR-MC are de-
picted in Table IX. As it was carried out previously, the mean
training and test AUC is reported for all the classifiers, including
FAR-MC and the Oracle, and the percentage of times each clas-
sifier matches with the decision of the Oracle. Also, the metric
win/tie/loss is shown.

If we focus on the average train and test AUC values, all of
them are quite similar, even the Oracle classifier. This is due to
the behavior of all the base classifiers, which in mean are very
similar (here we notice the effect of the no free lunch theorem).
However, if we pay attention to the hits or win/tie loss metric,
results are very different. In the case of imbalanced datasets,
obviously FAR-MC and IVTURS-Imb have the same results as
they behave equally.

Regarding the set of balanced problems, we may extract the
following conclusions. First, in terms of hits (same results as
the Oracle), IVTURS, and FAR-MC seems to be better than the

TABLE IX
RESULTS FOR THE TRAINING DATASETS: TRAINING AND TEST AUC (±

STANDARD DEVIATION), PERCENTAGE OF TIMES WHICH REACHES THE BEST

POSSIBLE RESULT (ORACLE) AND THE WIN/TIE/LOSS METRIC COMPARED

WITH THE BEST IN TERMS OF MEAN RANKING (FAR-MC)

rest. Between these two classifiers, the win/tie/loss point out
that FAR-MC is more robust than IVTURS.

B. Testing FAR-MC Against the FARC-HD Family Classifiers

Once we have learnt the hierarchical rule system of FAR-MC,
we will evaluate its performance over the test set of problems
Dtest.

As in the standard classification task, this will allow us to
determine the goodness of our approach on a set of unseen
problems, so that we can determine whether our FAR-MC clas-
sifier is able to achieve a good generalization, i.e., the rules have
been properly learnt and are valid for new unseen problems.

Similarly than in Section IV-3A, for each rule we show in the
complementary material (table of test datasets) the number of
datasets from Dtest which fire each rule, and the characteristics
in terms of DCM for this set of problems. If we compare these
results with those for the training datasets (the two tables shown
in the previous website), we can extract similar conclusions.
In fact, if we compare the percentage of datasets which fire
each rule for both sets of problems Dtrain and Dtest, we can see
that these numbers are quite similar. That means the knowledge
extracted in the training phase can also be applied to unseen
problems, which implies a good generalization capability of the
HRDS. It also confirms our initial hypothesis and relates the
DCM values and the performance of the classifiers, supporting
the research carried out in this paper.

The results for Dtest are shown in Table X. For all the classi-
fiers we show the training and test AUC (± the standard devia-
tion), the percentage of problems where each classifier obtains
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TABLE X
RESULTS FOR THE TEST DATASETS: TRAINING AND TEST AUC (± STANDARD

DEVIATION), PERCENTAGE OF TIMES WHICH REACHES THE BEST POSSIBLE

RESULT (ORACLE) AND THE WIN/TIE/LOSS METRIC COMPARED WITH THE

BEST IN TERMS OF MEAN RANKING (FAR-MC)

the same performance as the Oracle, and the win/tie/loss metric
between the best classifier in terms of mean rank (FAR-MC)
and the rest.

In the case of balanced datasets, we can see that FAR-MC has
increased in seven points the percentage of hits respect to the
results for Dtrain

bal . Comparing with the base classifiers, we can
appreciate a slightly decrease in the relative performance versus
FARC-HD (the ratio win/loses for Dtrain

bal is 1.66, and for Dtest
bal is

1.44, and a slightly increase versus IVTURS-Imb (1.5 for Dtrain
bal

and 1.72 for Dtest
bal ). In the case of imbalanced problems, we can

see more uniform results between IVTURS and IVTURS-Imb.
However, focusing on the w/t/l metric, it is still the outstanding.
Moreover, in general we can extract similar conclusions as for
the training datasets Dtrain, which means that the HRDS has
correctly adapted to the new problems, concluding that FAR-
MC has a good generalization power.

We also performed a statistical test to compare the perfor-
mance of FAR-MC against the FARC-HD familywise classi-
fiers. We will divide the analysis for the balanced, imbalanced
and the full set of test datasets Dtest. The results can be seen in
the Table XI.

In accordance with these experimental results, FAR-MC is
the best classifier in terms of the mean rank in all the cases.
Moreover, if we observe the corrected p-values FAR-MC is
statistically better than the other methods. This fact supports the
conclusions that we extracted previously, stressing FAR-MC as
the best strategy among the FARC-HD familywise classifiers.
As we discussed before, the results are noticeable better in terms
of the win/tie/loss metric.

TABLE XI
STATISTICAL TEST ANALYSIS BETWEEN FARC-SELECTOR AND FARC-HD AND

ITS VARIANTS

C. Analyzing FARC-Selector Versus State of the art

In the context of classification problems, maybe one of the
most widely used rule-based algorithms is the C4.5 decision tree
[19], [38]. The reasons are its robustness, efficiency, and good
performance [39], [40].

FURIA [20] is also a well-known and accurate state-of-the-art
fuzzy classifier, which has been recently used in several works
as a baseline algorithm to compare with [41]–[45].

Moreover, both algorithms are designed to be used for stan-
dard classification problems. For imbalanced datasets they has
been also widely applied in conjunction with the SMOTE pre-
processing technique [22], [30] (aiming at rebalancing the train-
ing set).

In this section, we will compare these state-of-the-art clas-
sifiers with our proposal FAR-MC. As stated in Section III-C,
we will make use of both AUC and F1-score metrics in order
to provide well-founded conclusions from our study. To make
the comparison, we will apply the same methodology used in
Section IV-B. The prediction performance can be seen in Ta-
bles XII and XIII (errors and the percentage of the test improve-
ment obtained with FAR-MC using AUC and F1-score metrics,
respectively) and the statistical analysis in Tables XIV and XV
using AUC and F1-score, respectively.

First of all, we can see similar results comparing AUC and
F1-score, being F1-score slightly more favorable to FAR-MC.
This fact gives more robustness to the conclusions we discuss
next.

If we compare FAR-MC versus C4.5 (both variants), the
results point out our proposal as the outperforming classifier,
both in terms of mean rank and the win/tie/loss metric. Pay-
ing attention to the corrected p-values, it is especially worth
pointing that FAR-MC is rather better, which supports again
the quality and robustness of FAR-MC. In relation to the test
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TABLE XII
RESULTS FOR THE TEST DATASETS: TRAINING AND TEST AUC (± STANDARD

DEVIATION) AND THE WIN/TIE/LOSS METRIC COMPARED WITH THE BEST IN

TERMS OF MEAN RANKING (SMOTE+FURIA)

TABLE XIII
RESULTS FOR THE TEST DATASETS: TRAINING AND TEST F1-SCORE (±

STANDARD DEVIATION) AND THE WIN/TIE/LOSS METRIC COMPARED WITH

THE BEST IN TERMS OF MEAN RANKING (SMOTE+FURIA)

error, we can see an improvement with respect to the state-
of-the-art algorithm greater than 1% and 2% (for AUC and F1-
score), except for balanced datasets (which is 0.72% and 1.41%,
respectively).

Focusing on the comparison between the fuzzy classifiers,
we observe a similar behavior in terms of performance between
FAR-MC and SMOTE+FURIA, whereas FAR-MC is signifi-
cantly better than FURIA in the general case study (all datasets)

TABLE XIV
STATISTICAL TEST ANALYSIS BETWEEN FAR-MC AND THE STATE-OF-THE-ART

CLASSIFIERS, USING THE AUC METRIC

TABLE XV
STATISTICAL TEST ANALYSIS BETWEEN FAR-MC AND THE STATE-OF-THE-ART

CLASSIFIERS, USING THE F1-SCORE METRIC

and for imbalanced problems. From the point of view of in-
terpretability, FAR-MC is remarkably more interpretable. FU-
RIA, based on the well-known RIPPER algorithm [46], tends to
generate large systems of specialized rules (which are formed
by many antecedents). Moreover, it does not generate directly
fuzzy rules. Instead, it generates interval based rules, and the
process is followed by a fuzzy fication phase, which generates
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hardly interpretable database definitions. On the other hand,
FAR-based classifiers used by FAR-MC aim to produce simple
systems, both in terms of the number of rules and the number
of antecedents per rule (usually parameterized to generate rules
formed by three antecedents at most).

V. CONCLUDING REMARKS

In this paper, we have proposed FAR-MC, a new metaclassi-
fier that aims to use the best base classifier among a set of them
based on the input dataset properties. To do so, we have gath-
ered a set of 12 different DCM to create DoC for the associated
classifiers. These DCM describe the dataset properties allowing
to determine if a specific classifier may perform better than the
others.

We have generated these DoC using the software tool devel-
oped in [10]. To use it properly in the scope of this problem
we have designed a score based on the relative performance be-
tween each classifier and other labeled as the default classifier.

Finally, we have built a hierarchical rule system that aims to
select the best base classifier accordingly to the dataset prop-
erties. The experimental results show a good performance of
FAR-MC obtaining significative statistical differences compar-
ing it versus the base classifiers, especially in the case of the
datasets selected for the validation. We also compared the re-
sults versus the state-of-the-art classifiers C4.5 and FURIA, us-
ing and not the preprocessing technique SMOTE. Results show
that FAR-MC is much better than C4.5, and not statistically
different from SMOTE+FURIA. However, FAR-MC produces
simpler and more interpretable models. Moreover, based on the
percentage of hits with respect to the Oracle, we believe that
there is field to improve the results following this research line.

It is also worth pointing that, in terms of computational time,
FAR-MC is comparable to the base classifiers. Our methodology
is based on two stages. The first one is the computation of the
DCMs of the input data. The second one is the selection of
the FARC-HD classifier by means of the hierarchical rules,
and the application of the classifier itself. Regarding the first
stage, some of the DCMs are really fast to compute as they rely
on statistical properties of the input attributes. For the second
stage, our proposal only uses a small set of rules to determine
the base classifier, thus, moving the computational efforts to the
application of the FARC-HD based classifiers.

As future work, we propose the usage of other alternatives
for the score based on the relative performance. One option
could be to use a metric that uses the information of the relative
performance of all the classifiers at once, as it is the ranking,
but without losing the information about the differences. This
can be done by normalizing the performance metric for all the
classifiers in the range [0 − 1]. Other alternative could be to
use the ranking of the classifier performances for each problem,
and design a new methodology to derive the DoC taking into
account that we deal with this particular metric. Moreover, it
could be interesting to analyze the performance of an ensemble
using the same family of FAR classifiers. A comparative of these
results versus our proposed metaclassifier could point out useful
conclusions.
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[18] A. Fernández, V. López, M. J. del Jesus, and F. Herrera, “Revisiting evo-
lutionary fuzzy systems: Taxonomy, applications, new trends and chal-
lenges,” Knowl.-Based Syst., vol. 80, pp. 109–121, 2015.

[19] J. R. Quinlan, “C4.5: programs for machine learning,” Amsterdam, The
Netherlands: Elsevier, 2014.
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[24] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules be-
tween sets of items in large databases,” ACM SIGMOD Rec., vol. 22, no. 2,
pp. 207–216, 1993.

[25] R. Sambuc, “Function ø-flous, application a laide au diagnostic en patholo-
gie thyroidienne,” Ph.D. dissertation, Univ. Marseille, Marseille, France,
1975.

[26] H. Bustince et al., “Ignorance functions. An application to the calculation
of the threshold in prostate ultrasound images,” Fuzzy Sets Syst., vol. 161,
no. 1, pp. 20–36, 2010.

[27] R. C. Prati, G. E. Batista, and M. C. Monard, “Class imbalances versus
class overlapping: an analysis of a learning system behavior,” in Proc.
Mexican Int. Conf. Artif. Intell., 2004, pp. 312–321.

[28] J. Huang and C. X. Ling, “Using auc and accuracy in evaluating learning
algorithms,” IEEE Trans. Know. Data Eng., vol. 17, no. 3, pp. 299–310,
Mar. 2005.

[29] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Know. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[30] N. V. Chawla, “C4.5 and imbalanced data sets: Investigating the effect of
sampling method, probabilistic estimate, and decision tree structure,” in
Proc. ICML’03 Workshop Class Imbalances, 2003.
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